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Magnetic-flux structures of disordered superconducting networks under an external magnetic field are stud-
ied, using the de Gennes-Alexander equation. These magnetic structures are different from those for regular
network. If the wire at the edge of the network is weak superconducting, the flux enters at this wire with
increasing magnetic field. And the change in equilibrium vortex structures with increasing magnetic field
becomes gradual; vortices change their positions to the neighboring holes.
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I. INTRODUCTION

Superconducting networks are composed of the thin su-
perconducting wires, which are connected with other wires.
They are examples of multiply connected superconductors.

The simplest network is a ring of superconducting wire. It
shows periodic change in the transition temperature with in-
creasing applied magnetic field perpendicular to the ring.
This oscillation comes from the entrance of the quantized
magnetic flux �0 and is well known as the Little-Parks
oscillation.1,2 Here �0= hc

2e is the flux quantum for supercon-
ductivity. This occurs because of the multiply connected
structure of the ring. The period of the oscillation is called as
a matching field, which is �0 divided by the area of the hole.
Increasing the connectivity of the network, it has various
magnetic structures with increasing applied magnetic field
and its transition temperature also shows complicated
structures.3

Theoretical study of the superconducting networks was
first done by de Gennes.4 He solved the linearized Ginzburg-
Landau equation for the superconducting lasso, which is a
ring with an arm attached to it, under the magnetic field.
Subsequently, Alexander generalized de Gennes’ method to
the general superconducting networks.5 His theoretical for-
mulation is summarized in coupled equations for supercon-
ducting order parameters at the vertices of the networks,
which is called as the de Gennes-Alexander �dGA� equation.
Several theoretical works on ladder networks,6 networks
with an external source,7 n strips,8 and a magnetically deco-
rated square network9 were followed.10 Also other methods,
Feynman path-integral approach11 and Ginzburg-Landau
approach12,13 were used.

Previously we studied finite superconducting networks.14

Their magnetic-field dependence of the transition tempera-
ture and magnetic structures are much different from the pe-
riodic networks. There appear the giant or doubly quantized

vortices �2�0� and antivortices and total structures have the
symmetry of the original networks. This is explained as fol-
lows. In the finite networks at the transition temperature,
superconductivity is unevenly distributed at the edge of the
networks. So, magnetic fluxes come together at the center of
the networks. Therefore the finiteness affects the magnetic-
flux structures. Such effect was also seen in mesoscopic or
nanoscopic superconductors.15–18 This is because of confine-
ment of quantized magnetic fluxes in such superconductors.
For example, in a superconducting disk, there appears a mul-
tiply quantized giant vortex, which was predicted
theoretically17 and detected by the multiple-small-tunnel-
junction method.18

Experimental observation of these peculiar vortex struc-
tures in the finite superconducting networks by the scanning
superconducting quantum interference device �SQUID� mi-
croscope was done.19–23 But complete agreement between
the theoretical predictions and experimental observations has
not been obtained.

It seems that there are two main reasons for this discrep-
ancy. First reason is that the states, which are observed by
the scanning SQUID microscope, are nonequilibrium states.
In order to observe the magnetic field of the vortices, the
networks should be cooled down well below the transition
temperature. In this cooling process, the states may become
out of equilibrium because the holes in the networks act as
strong pinning for the vortices. At the low temperature, the
dGA equation is not applicable and the Landau-Ginzburug
theory should be used. Such calculation was done by Ha-
yashi et al.12,13 Their results partly agree with experimental
results but not completely.

Second reason is that there might be disorders of the su-
perconducting wires. It is difficult to fabricate completely
symmetric networks and there remain disorders in the net-
works. Observed magnetic-flux structures19 sometime show
disordered patterns, which are far from the symmetric flux
structures.
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In this paper, we focus on these disorders in the supercon-
ducting networks. Therefore, we investigate the effect of the
disordered superconducting wire in the networks to the tran-
sition temperature and magnetic-flux structures, using the de
Gennes-Alexander equation.

II. METHOD

For the arbitrary networks, the de Gennes-Alexander
equation becomes as5

�i�
j

�
cos �ij

�ij sin �ij
− �

j

�� j
ei�ij

�ij sin �ij
= 0. �1�

Here i and j are indices of the vertices and �ij =
lij

�i j
, where lij

and �ij are the length and the coherence length of the wire
between the vertices i and j. Summation � j� is taken over the
vertex j that is connected to the vertex i. �i is the order
parameter at the vertex i and �ij is defined as,

�ij =
2e

�c
�

i

j

A · dl . �2�

Here A is the vector potential for the external magnetic field.
The coherence length of each wire is

�ij =
�0ij

�1 − T
Tcij

, �3�

where Tcij is the transition temperature and �0ij is the coher-
ence length at T=0 of the wire. For regular networks, Eq. �1�
becomes an eigenvalue equation, where � j�

cos �ij

�ij sin �ij
is the ei-

genvalue. The transition temperature is determined from the
largest eigenvalue.

In Eq. �1�, we can introduce disorders by changing �0ij or
Tcij. When �ij or Tcij depends on the position of wires, Eq.
�1� is no more the eigenvalue equation. But even in this case,
we can determine the transition temperature, using the fact

that the determinant of the matrix of coefficients for �i’s in
this equation becomes zero at the transition temperature. We
can obtain such temperature numerically. Simultaneously, the
order-parameter structure and the vortex structure of the
equilibrium state can be obtained.

III. RESULTS

We studied 3�3 holes square lattice networks, as shown
in Fig. 1. We set the length of all wires equal to 2�0, where �0
is the coherence length of the pure superconductor at T=0.
Colors of the bonds show the Tcij distribution. Figure 1�a� is
a regular network without disorders. The magnetic-field de-
pendence of the transition temperature of this regular net-
work is shown in Fig. 2�a�. In this figure, Hm=0.25

�0

�0
2 =

�0

4�0
2 is

a matching field, where there is a single vortex at every hole
in the network. For the transition-temperature curve �a�, each
rounded peak of the Tc curve corresponds to each equilib-
rium state, which is shown in Fig. 3. For example, the first
peak around H=0 corresponds to the Meissner state which is
shown in Fig. 3�a� and the second peak corresponds to the
single vortex state, which is shown in Fig. 3�b�. All of the
vortex structures are symmetric according to the symmetry
of the original regular network. At the dip of the Tc curve,
the vortex structure abruptly changes from a symmetric state
to another symmetric state.

From Fig. 2�a�, we notice that the magnetic-field depen-
dence of the Tc has a mirror symmetry about the H=0.5Hm
line. And the state Fig. 3�b� at H=0.20Hm can be converted
to the state Fig. 3�i� at H=0.08Hm=Hm−0.20Hm by changing
a vortex to a vortex hole and vice versa. In Fig. 3, there are
such correspondences for �c� and �h�, �d� and �g�, and �e� and
�f�. Ishida et al.19 claimed such symmetry experimentally.
We call this symmetry vortex-vortex hole symmetry. This
symmetry for regular square networks is proved analytically
in Ref. 24.

Next, we show the results for a disordered network #1,
which is shown in Fig. 1�b�. In this network, we decrease the
transition temperature of the wire at the corner �A� to 0.8Tc0,
where Tc0 is the transition temperature of the pure supercon-

(a) (c)

(d) (e)

(b)

A

FIG. 1. �Color online� Regular and disordered superconducting
networks. Dark gray bond means the transition temperatures Tcij are
lower than bulk value Tc0. We denote the disordered networks �b� as
#1, �c� as #2, �d� as #3 and �e� as #4.
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FIG. 2. �Color online� External magnetic-field dependence of
transition temperature Tc for superconducting networks. Each curve
�from �a� to �e�� corresponds to the network in Fig. 1
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ductor. The transition-temperature curve is shown in Fig.
2�b�. The curve becomes rather smooth compared to that of
the regular network �a� but it contacts with the regular net-
work curve �a� at its dips. Also, at zero external magnetic
field, the transition temperature decreases compared to the
pure network case �a�. This is explained as that the whole
superconductivity is weakened by the disordered wire be-
cause it costs the energy to support the superconductivity of
the weakened wire.

The vortex structures for the disordered network #1 are
shown in Fig. 4 for 0�H�0.5Hm. Increasing magnetic field
from zero, first single vortex appears at the right-upper hole
�b�. Next, it moves downward �c� and moves to center hole
�d�, and the second single vortex appears at the upper-right
hole �e�, moves downward �f�, and moves to the center hole
to form a doubly quantized vortex �2�0� �g�. Then the dou-
bly quantized vortex separates to two vortices �h� and the
center vortex moves downward �i�, and the third single vor-
tex appears right-upper hole �j�, moves downward �k�. Then
a pair of single vortex and antivortex appears at the upper-
center and center holes �l�, and a pair of vortex and antivor-
tex at the right-center and center holes disappears �m�. Fi-
nally, the forth single vortex appears at the upper-right hole

�n� and moves downward �o�. In this sequence of equilibrium
states, there are symmetric states �d�, �g�, �l�, and �o�, which
appear in the regular network �Fig. 3�. The effect of the
disordered wire on this sequence is the appearance of the
intermediate states between the symmetric states. And in
these states, vortices change their positions one by one
across the wire perpendicularly, not diagonally. Especially,
the vortices enter across the weak wire but they are not
pinned at the weak wire. The weak wire acts only as the gate
for the vortex entry, not the pinning site.

For the external field 0.5Hm�H�Hm, the equilibrium
states are shown in Fig. 5. Just after H=0.5Hm, five vortices
state become stable �a� and the change from the state Fig.
4�o� to this state is abrupt. Then upper-right vortex moves
downward �c�, sixth vortex enters at upper-right hole, center-
right vortex moves left and forms a doubly-quantized vortex
with the center vortex, then the doubly-quantized vortex
separates into center and upper-center vortices, and so on.
This sequence of the equilibrium states is similar to that in
Fig. 4. There are symmetric states ��a�, �d�, �i�, �l�, and �o��,
which appear for the regular network �Fig. 3�. And, there are
the intermediate states between the symmetric states, where
vortices change their positions one by one across the wire
perpendicularly, not diagonally.

(a)

(f) (g) (h) (i) (j)

(b) (c) (d) (e)
FIG. 3. �Color online� Vortex

structures in a pure network.
Magnitude of the external fields
are �a� H /Hm=0.004, �b� 0.20,
�c� 0.260, �d� 0.360, �e� 0.460,
�f� 0.540, �g� 0.640, �h� 0.740,
�i� 0.800, and �j� 1.00. Thick solid
lines are superconducting wires
and dark gray �red� and light gray
�green� disks are up and down
magnetic fluxes. A large �small�
disk is a doubly �single� quantized
vortex, respectively.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

FIG. 4. �Color online� Vortex
structures in the # 1 disordered
network. Magnitude of the exter-
nal fields are �a� H /Hm=0.004,
�b� 0.140, �c� 0.160, �d� 0.180,
�e� 0.240, �f� 0.260, �g� 0.288,
�h� 0.2952, �i� 0.2960, �j� 0.2980,
�k� 0.312, �l� 0.320, �m� 0.400,
�n� 0.408, and �o� 0.412. The sym-
bols are same as those in Fig. 3.

VORTEX STRUCTURES IN DISORDERED FINITE… PHYSICAL REVIEW B 80, 024510 �2009�

024510-3



Furthermore, there is the vortex-vortex hole symmetry for
this disordered network. The transition-temperature curve
Fig. 2�b� has a mirror symmetry about the H=0.5Hm line.
And the state Fig. 4�b� at H=0.14Hm corresponds to Fig.
5�n� at H=0.86Hm=Hm−0.14Hm. Also, there are correspon-
dences between other states, Fig. 4�c� and Fig. 5�m�, Fig.
4�d� and Fig. 5�l�, Fig. 4�e� and Fig. 5�k�, Fig. 4�f� and Fig.
5�j�, Fig. 4�g� and Fig. 5�i�, and so on. This vortex-vortex
hole symmetry for disordered networks is also proved ana-
lytically as the case of regular networks.25 And, the state Fig.
4�o� and the state Fig. 5�a� are under such correspondence
until H=0.5Hm but they cannot be transformed to each other
by a single-vortex movement. Therefore, the change at H
=0.5Hm becomes abrupt.

For the disordered network #2 in Fig. 1�c�, the equi-
librium states for 0�H�0.5Hm are shown in Fig. 6. Be-
cause of the vortex-vortex hole symmetry, the equilibrium
states for Hm�H�Hm can be construct from these figures.
Unlike to the network #1, there still symmetry about the
center horizontal line. Therefore the vortex configurations
also have this symmetry. The abrupt change between states
�f� and �g� comes from this symmetry. But except such re-
striction, changes between adjacent equilibrium states are
gradual.

For the disordered network #3 and #4 in Figs. 1�d� and
1�e�, the transition temperature is shown in Figs. 2�d� and
2�e�. They are not much decreased from the regular network
compared to the network #1 and #2. But the sequence of
equilibrium states for #3 is same as that for the disordered
network #1. Also, the sequence of the equilibrium states for
the disordered network #4 is same as that for the disordered
network #2. But the transition fields take different values
between two networks.

IV. SUMMARY

We have investigated the vortex structures for disordered
superconducting networks under the external magnetic field.
We found that only one single disordered superconducting
wire changes vortex structures totally. In the sequence of the
equilibrium states with increasing magnetic field, the vortex
configuration changes gradually. The disordered wire at the
edge of the network acts as the gate for vortex entry, not the
pinning site.

This result means the experimentally observed vortex
configurations may correspond to the one of the intermediate
states. But there are still symmetric vortex configurations and

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

FIG. 5. �Color online� Vortex
structures in the # 1 disordered
network. Magnitude of the exter-
nal fields are �a� H /Hm=0.580,
�b� 0.592, �c� 0.600, �d� 0.680,
�e� 0.688, �f� 0.702, �g� 0.704,
�h� 0.7048, �i� 0.712, �j� 0.740,
�k� 0.760, �l� 0.820, �m� 0.840,
�n� 0.860, and �o� 1.00. The sym-
bols are same as those in Fig. 3.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

FIG. 6. �Color online� Vortex structures in the
# 2 disordered network. Magnitude of the exter-
nal fields are �a� H /Hm=0.004, �b� 0.140, �c�
0.180, �d� 0.240, �e� 0.288, �f� 0.2952, �g� 0.298,
�h� 0.400, and �i� 0.408. The symbols are same as
those in Fig. 3.
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therefore to observe such theoretical predictions for the regu-
lar networks, it is needed to vary the magnetic field carefully,
we think.

In this study we only considered single disordered
wire. The effect of a number of disordered wires to the vor-
tex structures in the superconducting network is a future
problem.
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